Partilhar:

Facebook Twitter Google Digg Reddit LinkedIn Pinterest StumbleUpon Email

Exercicios de Matematica - Números Complexos

Exercicios de Matematica 12 ANO - Números Complexos - Exercício 12

Seja \mathbb{C} o conjunto dos números complexos.

 

12.1.     Seja n um número natural.

    Determine \frac{{\sqrt 3  \times {i^{4n - 6}} + 2\operatorname{cis} \left( { - \frac{\pi }{6}} \right)}}{{2\operatorname{cis} \left( {\frac{\pi }{5}} \right)}}, sem recorrer à calculadora.

      Apresente o resultado na forma trigonométrica.

 

12.2.     Seja \alpha  \in \left] {\frac{\pi }{4},\frac{\pi }{2}} \right[ .

    Sejam {z_1} e {z_2} dois números complexos tais que {z_1} = \operatorname{cis} \alpha e {z_2} = \operatorname{cis} \left( {\alpha  + \frac{\pi }{2}} \right).

      Mostre, analiticamente, que a imagem geométrica de  {z_1} + {z_2}, no plano complexo, pertence ao 2.º quadrante.

Atividades de Matematica Resolução: Exercicios de Matematica 12 ANO - Números Complexos - Exercício 12

 

Exercicios de Matematica 12 ANO - Números Complexos - Exercício 11

Seja \mathbb{C} o conjunto dos números complexos.


11.1.   Considere  {z_1} = \frac{{{{\left( { - 1 + \sqrt 3 {\text{ }}i} \right)}^3}}}{{1 - i}}  e  {z_2} = \operatorname{cis} \alpha , com \alpha  \in \left[ {0,\pi }                   \right[.

          Determine os valores de \alpha , de modo que {z_1} \times {\left( {{z_2}} \right)^2} seja um número imaginário puro, sem utilizar a calculadora.


11.2.     Seja z um número complexo tal que {\left| {1 + z} \right|^2} + {\left| {1 - z} \right|^2} \leqslant 10 .

            Mostre que \left| z \right| \leqslant 2.

 

Atividades de Matematica Resolução: Exercicios de Matematica 12 ANO - Números Complexos - Exercício 11

   

Exercicios de Matematica 12 ANO - Números Complexos - Exercício 10

      10.1. Considere {z_1} = \frac{{1 + \sqrt 3 i}}{2} + {i^{22}}  e {z_2} = \frac{{ - 2}}{{i{z_1}}}.

         Determine, sem utilizar a calculadora, o menor número natural n tal que  {\left( {{z_2}} \right)^n}é um número real negativo.


10.2.   Seja \alpha  \in \left[ { - \pi ,\pi } \right[ .

        Mostre que \frac{{\cos \left( {\pi  - \alpha } \right) + i\cos \left( {\frac{\pi }{2} - \alpha } \right)}}{{\cos \alpha  + i\operatorname{sen} \alpha }} = \operatorname{cis} \left( {\pi  - 2\alpha } \right).

Atividades de Matematica Resolução: Exercicios de Matematica 12 ANO - Números Complexos - Exercício 10

   

Exercicios de Matematica 12 ANO - Números Complexos - Exercício 9

Em \mathbb{C}, conjunto dos números complexos, considere {z_1} = {\left( { - 2 + i} \right)^3} e {z_2} = \frac{{1 + 28i}}{{2 + i}}.


9.1.   Resolva a equação {z^3} + {z_1} = {z_2}, sem recorrer à calculadora.

Apresente as soluções da equação na forma trigonométrica.

 

9.2.   Seja w um número complexo não nulo.

Mostre que, se w e \frac{1}{w} são raízes de índice n de um mesmo número complexo z, então z = 1 ou z = - 1.

Atividades de Matematica Resolução: Exercicios de Matematica 12 ANO - Números Complexos - Exercício 9

   

Exercicios de Matematica 12 ANO - Números Complexos - Exercício 8

Em \mathbb{C}, conjunto dos números complexos, considere {z_1} = \sqrt 2 + 2\operatorname{cis} \frac{{3\pi }}{4} e {z_2} = 1 + i.

8.1. Sabe-se que \frac{{{z_1}}}{{{z_2}}} é uma raiz quarta de um certo número complexo w.

     Determine w na forma algébrica, sem utilizar a calculadora.

 

8.2.   Seja {z_3} = \operatorname{cis} \alpha .

  Determine o valor de \alpha pertencente ao intervalo \left] { - 2\pi , - \pi } \right[, sabendo que {z_3} + \overline {{z_2}} é um número real.

 

Atividades de Matematica Resolução: Exercicios de Matematica 12 ANO - Números Complexos - Exercício 8

   

Pág. 1 de 2

Seja \mathbb{C} o conjunto dos números complexos.

 

12.1.     Seja n um número natural.

    Determine \frac{{\sqrt 3  \times {i^{4n - 6}} + 2\operatorname{cis} \left( { - \frac{\pi }{6}} \right)}}{{2\operatorname{cis} \left( {\frac{\pi }{5}} \right)}}, sem recorrer à calculadora.

      Apresente o resultado na forma trigonométrica.

 

12.2.     Seja \alpha  \in \left] {\frac{\pi }{4},\frac{\pi }{2}} \right[ .

    Sejam {z_1} e {z_2} dois números complexos tais que {z_1} = \operatorname{cis} \alpha e {z_2} = \operatorname{cis} \left( {\alpha  + \frac{\pi }{2}} \right).

      Mostre, analiticamente, que a imagem geométrica de  {z_1} + {z_2}, no plano complexo, pertence ao 2.º quadrante.

Ver Resolução do Exercício de Matemática ...

Seja \mathbb{C} o conjunto dos números complexos.


11.1.   Considere  {z_1} = \frac{{{{\left( { - 1 + \sqrt 3 {\text{ }}i} \right)}^3}}}{{1 - i}}  e  {z_2} = \operatorname{cis} \alpha , com \alpha  \in \left[ {0,\pi }                   \right[.

          Determine os valores de \alpha , de modo que {z_1} \times {\left( {{z_2}} \right)^2} seja um número imaginário puro, sem utilizar a calculadora.


11.2.     Seja z um número complexo tal que {\left| {1 + z} \right|^2} + {\left| {1 - z} \right|^2} \leqslant 10 .

            Mostre que \left| z \right| \leqslant 2.

 

Ver Resolução do Exercício de Matemática ...

      10.1. Considere {z_1} = \frac{{1 + \sqrt 3 i}}{2} + {i^{22}}  e {z_2} = \frac{{ - 2}}{{i{z_1}}}.

         Determine, sem utilizar a calculadora, o menor número natural n tal que  {\left( {{z_2}} \right)^n}é um número real negativo.


10.2.   Seja \alpha  \in \left[ { - \pi ,\pi } \right[ .

        Mostre que \frac{{\cos \left( {\pi  - \alpha } \right) + i\cos \left( {\frac{\pi }{2} - \alpha } \right)}}{{\cos \alpha  + i\operatorname{sen} \alpha }} = \operatorname{cis} \left( {\pi  - 2\alpha } \right).

Ver Resolução do Exercício de Matemática ...

Em \mathbb{C}, conjunto dos números complexos, considere {z_1} = {\left( { - 2 + i} \right)^3} e {z_2} = \frac{{1 + 28i}}{{2 + i}}.


9.1.   Resolva a equação {z^3} + {z_1} = {z_2}, sem recorrer à calculadora.

Apresente as soluções da equação na forma trigonométrica.

 

9.2.   Seja w um número complexo não nulo.

Mostre que, se w e \frac{1}{w} são raízes de índice n de um mesmo número complexo z, então z = 1 ou z = - 1.

Ver Resolução do Exercício de Matemática ...

Em \mathbb{C}, conjunto dos números complexos, considere {z_1} = \sqrt 2 + 2\operatorname{cis} \frac{{3\pi }}{4} e {z_2} = 1 + i.

8.1. Sabe-se que \frac{{{z_1}}}{{{z_2}}} é uma raiz quarta de um certo número complexo w.

     Determine w na forma algébrica, sem utilizar a calculadora.

 

8.2.   Seja {z_3} = \operatorname{cis} \alpha .

  Determine o valor de \alpha pertencente ao intervalo \left] { - 2\pi , - \pi } \right[, sabendo que {z_3} + \overline {{z_2}} é um número real.

 

Ver Resolução do Exercício de Matemática ...

Na figura está representado um hexágono cujos vértices são as imagens geométricas, no plano complexo, das raízes de índice 6 de um certo número complexo. O vértice C é a imagem geométrica do número complexo \sqrt 2 {\rm{cis}}\left( {\frac{{3\pi }}{4}} \right).

 Determine o número complexo que tem por imagem geométrica o vértice D.

 

 

Ver Resolução do Exercício de Matemática ...

Represente geometricamente (diagrama de Argand) o conjunto dos pontos do plano definido pelas imagens dos complexos z  que satisfazem as condições:

 

6.1.    1 \le {\mathop{\rm Re}\nolimits} \left( z \right) < 4{\rm{   }} \wedge {\rm{   }}{\mathop{\rm Im}\nolimits} \left( {z - i} \right) \ge  2

 

6.2.    \left| {z + 2 - i} \right| \le 2{\rm{   }} \wedge {\rm{   }}{\mathop{\rm Im}\nolimits} \left( z \right) \ge 1

 

6.3.    0 \le {\rm{arg}}\left( {z + 1 - i} \right) < \frac{\pi }{2}{\rm{   }} \wedge {\rm{   }}\left| {z + 1 - i} \right| \ge 2

Ver Resolução do Exercício de Matemática ...

Considere o número  z = 1 + {\rm{cis}}\left( {\frac{\pi }{3}} \right).

Determine o menor número natural  n  de modo que {z^n}  seja  :

 

5.1.   Um número real;

 

5.2.   Um número imaginário puro.

Ver Resolução do Exercício de Matemática ...