Partilhar:

Facebook Twitter Google Digg Reddit LinkedIn Pinterest StumbleUpon Email

Exercicios de Matematica 12 ANO - Função Exponencial - Exercício 1

Considere a função f, definida em \mathbb{R}, por f (x) = 5^{x+2} -125 .

 

1. Determine as coordenadas dos pontos de interseção do gráfico de f com os eixos coordenados.


2. Caracterize a função inversa de f.

 


Resolução do exercício de Matemática:

 

1.

 

• Interseção com o eixo dos xx  .

 

f (x)=0 \Leftrightarrow 5^{x+2} -125=0 \Leftrightarrow 5^{x+2}=125 \Leftrightarrow 5^{x+2}=5^{3} \Leftrightarrow

\Leftrightarrow x+2=3 \Leftrightarrow x=1

 

O ponto de interseção com o eixo dos xx  é o pontoA(1,0)

 

• Interseção com o eixo dos yy  .

 

f (0)=5^{0+2} -125 = 5^{2}-125=25-125=-100

 

O ponto de interseção com o eixo dos yy  é o ponto B(0,-100)

 

2.

 

y=5^{x+2} -125 \Leftrightarrow y+125=5^{x+2} \Leftrightarrow log_{5}(y+125)=x+2 \Leftrightarrow

 

\Leftrightarrow x=-2+log_{5}(y+125)

 

Temos que,

f^{-1}(x)=-2+log_{5}(x+125)

 

D_{f^{-1}}=\left \{ x\in \mathbb{R}: x+125>0 \right \}=]-125;+\infty [

 

f^{-1}:]-125;+\infty [\rightarrow \mathbb{R}

                              x \to y= -2+log_{5}(x+125)

 

Funções trigonométricas 11º Ano

Redução ao Primeiro Quadrante

Observa a seguinte Figura:

reducoes-ao-primeiro-quadrante-img01

Os triângulos \left[ {OAD} \right]{\text{ e }}\left[ {OBF} \right] são congruentes (geometricamente iguais).

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática

Estudo de uma função quanto à monotonia e existência de extremos relativos

Exercício 3

Considere a função f , definida por:

f(x) = {x^3} - 3{x^2} - 9x + 4

Estude a função quanto à monotonia e existência de extremos relativos.

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática

Exercícios de Matemática 11º Sucessões

Exercício 1

Considere a sucessão ({u_n}) de termo geral

{u_n} = \frac{{2n}}{{n + 1}}

  1. Calcule o 4º termo da sucessão
  2. Averigue se 1,9 é termo da sucessão

 

Ver Resolução do Exercício de Matemática ...

Funções trigonométricas

Estudo da Função Tangente

Considera a função real de variável real f, definida por f(x) = tg{\text{ }}x.

1. Indica o dominio de f.


2. Esboça o gráfico de f.


3. A partir do gráfico obtido, faz um estudo da função f quanto a:

a. Período

b. Zeros

c. Extremos e extremantes

d. Paridade

e. Injetividade

f. Contradomínio

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática

Equação de uma Reta Tangente ao Gráfico

Exercício 1

 

Considere a função f , definida por

f(x) = {x^3} - 3{x^2} + 1

Escreva uma equação de uma reta tangente ao gráficof  de no ponto de abcissa:

a. 2

b. 1

Ver Resolução do Exercício de Matemática ...

Funções trigonométricas

Estudo da Função cosseno

Considera a função real de variável real f, definida por f(x) = cos{\text{ }}x.

1. Indica o dominio de f.


2. Esboça o gráfico de f.


3. A partir do gráfico obtido, faz um estudo da função f quanto a:

a. Período

b. Zeros

c. Extremos e extremantes

d. Paridade

e. Injetividade

f. Contradomínio

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática

Taxa de Variação média

Exercício 1

 

Considere a função , definida por f(x) = {x^2} - 3x + 4.

Calcule a taxa de variação média de no intervalo [0,1].

Ver Resolução do Exercício de Matemática ...

Funções trigonométricas

Estudo da Função seno

Considera a função real de variável real f, definida por f(x) = sen{\text{ }}x.

1. Indica o dominio de f.


2. Esboça o gráfico de f.


3. A partir do gráfico obtido, faz um estudo da função f quanto a:

a. Período

b. Zeros

c. Extremos e extremantes

d. Paridade

e. Injetividade

f. Contradomínio

Ver Resolução do Exercício de Matemática ...

      1. Considere {z_1} = \frac{{1 + \sqrt 3 i}}{2} + {i^{22}}  e {z_2} = \frac{{ - 2}}{{i{z_1}}}.

         Determine, sem utilizar a calculadora, o menor número natural n tal que  {\left( {{z_2}} \right)^n}é um número real negativo.

2.   Seja \alpha  \in \left[ { - \pi ,\pi } \right[ .

        Mostre que \frac{{\cos \left( {\pi  - \alpha } \right) + i\cos \left( {\frac{\pi }{2} - \alpha } \right)}}{{\cos \alpha  + i\operatorname{sen} \alpha }} = \operatorname{cis} \left( {\pi  - 2\alpha } \right).

Ver Resolução do Exercício de Matemática ...

Em \mathbb{C}, conjunto dos números complexos, considere {z_1} = {\left( { - 2 + i} \right)^3} e {z_2} = \frac{{1 + 28i}}{{2 + i}}.

1. Resolva a equação {z^3} + {z_1} = {z_2}, sem recorrer à calculadora.
Apresente as soluções da equação na forma trigonométrica.

2. Seja w um número complexo não nulo.
Mostre que, se w e \frac{1}{w} são raízes de índice n de um mesmo número complexo z, então z = 1 ou z = - 1.

Ver Resolução do Exercício de Matemática ...

Em \mathbb{C}, conjunto dos números complexos, considere {z_1} = \sqrt 2 + 2\operatorname{cis} \frac{{3\pi }}{4} e {z_2} = 1 + i.

1. Sabe-se que \frac{{{z_1}}}{{{z_2}}} é uma raiz quarta de um certo número complexo w.

     Determine w na forma algébrica, sem utilizar a calculadora.

 

2.   Seja {z_3} = \operatorname{cis} \alpha .

  Determine o valor de \alpha pertencente ao intervalo \left] { - 2\pi , - \pi } \right[, sabendo que {z_3} + \overline {{z_2}} é um número real.

 

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática 12º Ano - Complexos

Exercício 7

Na figura está representado um hexágono cujos vértices são as imagens geométricas, no plano complexo, das raízes de índice 6 de um certo número complexo. O vértice C é a imagem geométrica do número complexo\sqrt 2 {\rm{cis}}\left( {\frac{{3\pi }}{4}} \right).

 Determine o número complexo que tem por imagem geométrica o vértice D.

 

 

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática 12º Ano - Complexos

Exercício 6

Represente geometricamente (diagrama de Argand) o conjunto dos pontos do plano definido pelas imagens dos complexosz  que satisfazem as condições:

 

1. 1 \le {\mathop{\rm Re}\nolimits} \left( z \right) < 4{\rm{   }} \wedge {\rm{   }}{\mathop{\rm Im}\nolimits} \left( {z - i} \right) \ge  2

 

2. \left| {z + 2 - i} \right| \le 2{\rm{   }} \wedge {\rm{   }}{\mathop{\rm Im}\nolimits} \left( z \right) \ge 1

 

3. 0 \le {\rm{arg}}\left( {z + 1 - i} \right) < \frac{\pi }{2}{\rm{   }} \wedge {\rm{   }}\left| {z + 1 - i} \right| \ge 2

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática 12º Ano - Complexos

Exercício 5

Considere o númeroz = 1 + {\rm{cis}}\left( {\frac{\pi }{3}} \right)     .

Determine o menor número natural  n   de modo que{z^n}    seja  :

 

a)   Um número real;

 

b)   Um número imaginário puro.

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática 12º Ano - Complexos

Exercício 4

Considere os númerosr = 4 + 2i   ew = 2{\rm{cis}}\left( {\frac{\pi }{3}} \right)   .

 

a)   Represente na forma algébrica o complexot = \frac{r}{w}    .

 

b)   Resolva, em\mathbb{C}   , a equação i{z^4} = w    .

 

c)   Sabe-se quew  é uma das raízes cúbicas de um complexou  , determine as outras raízes cúbicas deu    .

Ver Resolução do Exercício de Matemática ...

Exercícios de Matemática 12º Ano - Complexos

Exercício 3

Considere os números complexos:z = - 2i   ,w = 1 + \frac{1}{i}   , t = - \sin \left( {\frac{{4\pi }}{3}} \right) + i\cos \left( {\frac{{4\pi }}{3}} \right)  .

 

1. Represente os números complexos dados na forma trigonométrica.

 

2. Represente na forma algébrica o complexou = {w^5}  .

 

Ver Resolução do Exercício de Matemática ...