Resolução do Exercício de Matemática
1. Sendo o domínio de uma função o conjunto dos valores que podemos atribuir à variável independente
, sendo que a tangente,
, não está definida sempre que o cosseno se anula, logo
.
2. Para representar graficamente a função podemos utilizar o estudo efetuado no círculo trignométrico.

3. Com base na representação gráfica apresentada podemos afirmar que:
a. Periodicidade:
é uma função periódica de período positivo mínimo
, o que significa que a função tangente assume os mesmos valores de
em
, isto é 

b. Zeros:
admite zeros em 
c. Extremos:
não tem extremos.
d. Paridade:
é uma função ímpar, pois
. Graficamente esta propriedade traduz-se pela existência de simetria relativamente à origem do referencial.
e. Injetividade:
não é injetiva, pois é uma função periódica, isto é, há inúmeros objetos diferentes que têm a mesma imagem, exemplo 
f. Contradomínio:


.



